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SUMMARY 

A study is made of the effects on the fluid motion past a semi-infinite flat plate of introducing a uniform in- 
jection of extra fluid from a finite porous section of the plate. Steady laminar flow is considered with a uni- 
form oncoming stream parallel to the plate in an incompressible fluid. A local analysis valid near the start and 
finish of the injection is found to produce unusually firm predictions for the singular behaviour of the solu- 
tion of the Navier-Stokes equations there and in particular shows that separation ahead of the injection is 
inevitable for all positive Reynolds numbers R. Then a numerical treatment of these singular points, and of 
the Navier-Stokes equations and boundary conditions, is described and the results are presented for a range 
of values of R, The calculation method used is based on the accurate and efficient centred differencing tech- 
nique suggested by Dennis I1] and developed recently by Dennis and Hudson [2]. Checks on the influences 
of mesh spacing, of the placing for the outer boundaries of the computational domain, and of the treatments 
of the singular points are given. The agreement found with the previous local analysis near the ends of the in- 
jection proves especially encouraging. In addition the results provide some guidance to the asymptotic struc- 
ture of the flow at high Reynolds numbers and to the questions surrounding the occurrence of large-scale 
separations. 

1. Introduction 

The theoretical and practical effects on the fluid motion past a fixed surface of allowing extra 

fluid to be injected through a porous section of the surface have been the subjects of study for 

many years. The usual applications in mind have been within the context of aerodynamics, 

where for example injection is used in the jet-flap configuration at or near the trailing edge of an 

aerofoil (Spence [3], [4], Stratford [5], [6], Leamon and Plotkin [7], Sato [8], Ives and Mel- 

nik [9], O'Mahoney and Smith [10]) or within the context of internal flow dynamics where 

fluid injection is often intended to act as a coolant for a turbine blade (for instance, Hartunian 

and Spencer [ 11 ], [ 12], Fernandez and Zukoski [ 13 ]). One of the main practical reasons for in- 

vestigating the effects of injection is the possibly disadvantageous influence that injection can 

exert especially on boundary layer transition, control and/or separation at high Reynolds hum- 
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bers. This has to be compared with the advantages to be gained from the intended cooling of 
the surface or the increase in lift desired. The methods and aims in the vast number of studies 

that have been made of fluid injection phenomena differ widely and include experimental, nu- 
merical and theoretical works on both laminar and turbulent flow, in two- or three-dimensional 
internal or external flow situations. Both compressible and incompressible fluid flow properties 
have been considered. Reviews and references on the subject have been given by Goldstein [14], 

Inger and Gaitatzes [15] and Smith and Stewartson [t 6], among others. 
Given this great diversity of interest in injection problems we shall confine our attention 

henceforth largely to steady laminar two-dimensional external flows with injection, for the sake 

of brevity. The relevant theoretical work then has mainly been concerned with attempting to 
predict the basic features of the motion in the most important practical regime of high Reynolds 

number flows, starting with Pretsch's [ 17] study of the boundary layer response to a relatively 

weak amount of injection. A common approach has been to seek similarity solutions, following 
Emmons and Leigh's [18] calculations of the Falkner-Skan problem with injection. Unfortu- 
nately such solutions generally require the presence of unrealistic distributions of injection at 

the surface, often with a semi-infinite length assumed for the porous section (although some 
exceptions to this are mentioned and investigated by Diver and Stewartson [19]). Indeed, if 

we concentrate on the probably most realistic theoretical distribution, that of uniform injection 
from a porous section of finite length, then the number of relevant papers is reduced consider- 
ably. All are concerned in fact with the injection of fluid from a finite porous section of a flat 
plate in a uniform stream. First, Catherall, Stewartson and Williams [20] considered the case of 
weak injection starting at the leading edge of the plate, integrated the boundary layer equations 
up to the onset of separation and there examined in detail the structure of the nearly separated 
flow. Next, Smith [21] and Smith and Stewartson [16] studied the supersonic slot-injection 
problem for stronger injection from a small porous slot situated downstream from the leading 

edge. Using triple-deck theory (see Stewartson [23], Messiter [24]) they obtained analytical and 
numerical results for the ensuing flow solutions including some with separation occurring near 
the start of the injection. The latter then provided the basis for the analysis by Smith [21], 
Smith and Stewartson [22] and Stewartson [25] of the motion due to strong injection from a 

porous section whose length is not small. There, for supersonic flow, separation of the Stewart- 
son and Williams [26] form is predicted to occur well ahead of the start of the injection and an 
apparently complete asymptotic description of the flow field proves attainable. This is to be 
contrasted with the asymptotic descriptions of other related external supersonic flow problems 
involving separation (Messiter, Hough and Feo [27], Burggraf [28], [29]) where due to difficul- 
ties concerning the subsequent reattachment process downstream the theory remains not quite 
complete. 

The injection problem above therefore stands out as the one problem involving separation 
for which a complete asymptotic account has been given, at least in supersonic flow. In subsonic 
flow earlier attempts had been made by Wallace and Kemp [30] and Smith [21], [31] to pro- 
vide an account for the asymptotic flow properties with strong injection, but these attempts 
were of a tentative nature. They were based on the Cole and Aroesty [32] model for strong in- 
jection and in particular did not allow for any significant upstream separation, which is implied 
by analogy with the supersonic flow solution of Smith and Stewartson [22] and is governed pre- 
sumably by the Sychev [33J-Smith [34] theory for subsonic separation. Further attempts by 
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Drs. F. T. Smith and P. W. Duck aimed at handling the theoretical subsonic description for high 

Reynolds number flow are under way, however. Again the hope is that as for the supersonic 

case a complete description will be forthcoming, including an adequate resolution of the re- 
attachment process which in other related subsonic flow problems with separation (Smith [35]) 

causes difficulties very similar to those arising in the related supersonic flow problems described 

in the previous paragraph. Experimentally there is some evidence, in subsonic (Smith [31]) as 

well as supersonic conditions (Hartunian and Spencer [11], [12], Fernandez and Zukoski, [13]) 

to support the view that separation does occur significantly far ahead of the injection in laminar 

or turbulent flow at high Reynolds numbers. By contrast, however, numerical solutions of the 

subsonic triple-deck problem for slot-injection calculated by Napolitano and Messick [36] (see 

also Smith [21]) tend to suggest the occurrence of a much more significant separation down- 

stream of the porous section. To date therefore the asymptotic account of the primary effects 

of injection is far from clear in subsonic flow. 

An alternative theoretical approach to the problems associated with fluid injection in sub- 

sonic flow is to seek numerical solutions of the Navier-Stokes equations for finite values of the 
Reynolds number. As far as we know there has been little or no concerted effort made on this 

aspect of the flow problems. Accordingly in this paper we will address the basic problem of in- 

jection from a finite porous section of a semi-infinite flat plate placed parallel to a uniform on- 
coming stream and we will describe a numerical treatment and solution of the Navier-Stokes 

equations for a range of values of the Reynolds number. It is assumed that the fluid is incom- 
pressible and that the flow remains steady, laminar and two-dimensional throughout. Some of 

the initial aims of the computational approach here are to provide quantitative information on 

the resultant flowfield for finite values of the Reynolds number, thereby to judge the relevance 
of inter alia the asymptotic proposals mentioned above for high Reynolds numbers and hope- 

fully even to provide some further guidance for the asymptotic theory. The last objective here 

is given some credence by the recent calculations of Dennis and Smith [37] for separating flow 

through a channel with a step. They found very good agreement with the corresponding asymp- 

totic theory of Smith [38] for Reynolds numbers of the order of 100 or greater. During the 

course of the present work it turns out however that another significant objective can also be 

set: namely, the testing of the accuracy of the numerical approach near known singularities of 

the flow solution. For an analysis of the solution of the Navier-Stokes equations near the start 

or finish of the injection yields certain irregular properties that ideally should be reproduced in 

any numerical treatment. Moreover these properties, obtained from an extension of the Dean- 

Montagnon [39] and Moffatt [40] theory, do not contain the high degree of arbitrariness which is 
usually associated with such local analyses. So an unusually firm comparison can be made lo- 

cally with any numerical solution of the full injection problem. 

The governing equations and boundary conditions are set out in Sec. 2 below together with 
the local analysis for the irregular properties of the problem near the ends of the injection. This 

analysis also confirms two main attributes of the solution for finite values of the Reynolds num- 

ber. First, separation, or flow reversal, is bound to occur ahead of the injection since the wall 

vorticity is infinitely positive at the starting point of the injection. Second, the fluid must cer- 
tainly be forward-moving sufficiently close to the finish of the injection since at the finishing 
point the wall vorticity is infinitely negative. 

The numerical approach adopted for the Navier-Stokes equations is described in Sec. 3 and 
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is based on the efficient centred differencing scheme proposed by Dennis [1 ] and developed by 

Dennis and Hudson [2]. The treatment of the boundary conditions is also described in Sec. 3. 

Then Sec. 4 presents the main numerical solutions obtained and the results of the tests applied 

to them. In particular the comparisons with the local properties predicted in Sec. 2 prove fairly 

encouraging. The possible implications for high Reynolds number flows, including the question 
of the position of the separation point ahead of the injection, are also discussed in Sec. 4. Fur- 

ther comments are made in Sec. 5. 

2. The governing equations and certain local properties 

The situation to be considered concerns the steady laminar two-dimensional flow of an incom- 

pressible fluid past a semi-infinite flat plate, a finite section of which is porous (Figure 1). The 

plate, given by y* = 0, x* > 0 in cartesian coordinates x*, y*, is aligned with a uniform free 

stream of speed U* at infinity upstream and the porous sectiony* = 0, x* < x *  <x,~, say, of 

the plate allows a uniform normal injection of the same fluid at a given speed V~v. Here xs* > 0, 

V* ~> 0. The motion is assumed to be symmetric about y* = 0, so that only the upper half plane 
W 

y*  ~> 0 needs to be considered. A suitable definition of the Reynolds number is 

R = 2UZ x*/u* (2.1) 

where v* is the kinematic viscosity of the fluid. Hence with the nondimensional coordinates 

(x, y )  = (x*, y*) /2x* and corresponding velocity components u, v nondimensionalized with re- 
Uoo, the Navier-Stokes equations take the form spect to * 

(2.2) 

w h e r e  V 2 ~ 02 /OX 2 -I" ~2 /Oy2  and ~', ff give the vorticity and stream function, so that 

u = @ ,  v = - f f x .  (2.3) 

u = l  

v = 0  ID 

Figure 1. 

¥ 

~ ½____, v = Vw, u = 0 

----4~ × 

Sketch of the nondimensionalized flow problem and the coordinate system. 
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The boundary conditions at y = 0, upstream of and along the plate, require 

at y = O  

= ~" = 0 for x < 0, (2.4a) 

= 0, @ = 0 for 0 < x  < 1/2, (2.4b) 

¢ = -  V w ( X - 1 / 2 ) ,  ~ y = 0  f o r a / 2 < x < L + l / 2 ,  (2.4c) 

~ k = - V w L ,  @ = 0  f o r x > L  + l / 2  (2.4d) 

for symmetry and for the no-slip or injection constraints, along the plate. Here V w = V * / U *  

and L = ( x~  - x s ) / 2 x  s are given finite parameters representing the relative speed and length of 

the normal injection. The free-stream conditions impose the constraints 

@ --, 1, fix ~ 0 as x 2 +y2 -~ o~ generally, (2.5) 

although we must allow for the eventual emergence of a boundary layer-like flow at downstream 

infinity. There the effect of the injection diminishes and to leading order the motion is expected 

to approach the Blasius form appropriate to motion past an impermeable semi-infinite fiat plate. 
Thus asx 2 +y2 -+ ~, but w i t h y / x  1/2 fixed (2.5) is replaced by the asymptote 

111 rL, x l /2  fB (R I /2 y / x  l[2 ) (2.6) 

where fB is the Blasius function satisfying 2 f~ '  + f B f'B' = O, f B (0) = f'B (0) : O, f'B (~' ) = 1. 

Our numerical treatment of  the governing equations (2.2) with the constraints (2.4)-(2.6) is 

discussed in Sec. 3 below. Beforehand certain local properties of the solution are worthy of 
examination. First, near the leading edge x = y = 0 of  the plate the solution is expected to ap- 

proach a well-known classical form, associated also with the motion past an impermeable flat 

plate, in which the stream function ff is proportional to the 3/2th power of distance from the 
leading edge. Therefore the vorticity ~" is singular there, being proportional to the inverse 1/2th 

power of that distance (see Dean and Montagnon [39], Moffatt [401, Walsh [41] and others). 
The second local property concerns the solution near the start of the injection at x = 1/2. 

There an analysis similar to that of Moffatt [40] can be applied and provides some surprisingly 

fruitful results. After some trial and error, and bearing in mind the corresponding results for 

zero injection [40], we reach the conclusion that the solution expands locally in the form 

~=rfo(O)+r 2 lnrflL(O)+r2fl(O)+ . . . .  

= r -1 Fo(O) + In r F l r  (0) + F l (0) + ... 

(2.7) 

where 

x 1 / 2 = r c o s O ,  y = r s i n O  and O < r , ~ l .  
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Substituting (2.7) into (2.2) and equating terms of  equal order in r yields the typical slow-flow 

equations 

t:o' + Fo = 0, Fo =fo' +fo (2.8a) 

at leading order, while the boundary conditions (2.4b, c) require 

fo (0) = - V w, fo (0) = fo (Tr) = fo (n) = 0. (2.Sb) 

From (2.8a, b) we obtain the leading order terms 

fo (0) = V w ~-1 (0 cos 0 - sin 0 - rr cos 0), (2.8c) 

F o (0) = - 2 V w rr -1 sin 0, (2.8d) 

the streamlines for which are shown in Figure 2. Notice however that,  at 0 = 0, zr, (2.8d) gives 

no contr ibution to the behaviour of  the wall vorticity ~'(x, 0) near the start of  the injection. 

Instead we must proceed to the second-order terms in the local solution which are governed by 

a slow-flow equation again, 

f l y  pr IL + 4 f l L  = 0, 

from (2.2) and (2.7), and by f l z  = f~L = 0 at 0 = 0, n. Hence 

f l L  = A L  (cos 20 - 1) ; FIL  = 4 A  z (2.9) 

where A L is a constant as yet  unknown. However, A z can be determined from the third-order 

terms of  (2.7) which from substitution into (2.2) satisfy 

r t  
f~v + 4f~'  = - 4 f l  L - R ( f o F o )  ' 

Y Y 

- - - * x - -  ( L +  ~) 

(2 10a) 

Figure 2. (a) The streamlines near the start of the injection at x = 1/2 according to the leading term of the 
local prediction (2.7) (see also (2.8c)). (b) The corresponding streamlines near the finish of the injection at 

1 
x = L +  -- . 

2 

Journal ofEngineeringMath., Vol. 15 (1981) 267-286 



Injection from a fiat plate 273 

and the boundary conditions 

fl  =f ;  =0  at 0 = 0 ,  n (2.10b) 

from (2.4b, c). It is noteworthy that (2.10a) marks the first appearance of the nonlinear inertial 
effect (co R in (2.2)) on the expansion and that the presence of the logarithmic term f l£  is 
necessary to counteract the inertial effect in (2.10a) and to allow (2.10a, b ) to  be soluble. The 

solution of (2.10a) is 

f l  =A~ cos20 +B 1 sin20 + C 1 0 +D1 

+ E~ O cos20 + GI O sin20 + H~ O 2 sin20 (2.11a) 

where the constants A1, B1, C1, D1 remain unknown but E l ,  G1, Hx are given by 

2 
8 G1 = 8AL + R V w 7r -1 , 16H1 = - R  V w 7r -2 , 16E1 = 40H1 - R V~ rr -2 (2.11 b) 

because of (2.8c, d), (2.9). Applying (2.10b) then requires 

A 1 +D~ =0; B 1 =0; 

C~ +E~ =0; G1 =-H~Tr.  

(2.1 lc) 

The last equation here, along with (2.1 lb), fixes the value ofA z and we find 

A L = - R V w / 1 6 n .  (2.12) 

Hence putting 0 = 0, 7r in (2.7) and using (2.9), (2.12) we have the leading-order nonzero terms 

1 
fw • -  4 ~ l n  I x - 7  I + O ( I )  (2.13) 

for the wall vorticity near x = 1/2 +. The O(1) term in (2.13) is proportional toA1 in fact but 
A 1 is not fixed by (2.11 c), or presumably by the local expansion at all, but remains an unknown 
to be fixed by the global solution of our flow problem. Local properties similar to those above 

hold also near the finish of the injection at x = L + 1/2 and are referred to later in Sec. 4. 
An unusual feature of the local forms in (2.7) above is their lack of arbitrariness in the two 

dominant pairs (f0, F0) and (f lL,  FIL) of the expansions; the arbitrariness inherent in any 
local expansion is here suppressed until the third pair ( f l ,  F1 ) in (2.7), wherein the constant A 1 
first appears. Since, clearly, some special treatment is called for to take satisfactory account of 
the irregular nature of the solution near the start and finish of the injection, as well as near the 
leading edge, the analytical results (2.8c, d), (2.13) in particular and their counterparts near the 
finish of the injection provide valuable checks on the accuracy of any such special treatment 
adopted. The relevant comparisons between (2.8c, d), (2.13) and our numerical results are 
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presented in Sec. 4 below, after the description in Sec. 3 of the numerical approach used for 
the solution of (2.2)-(2.6) and for the treatment of the three singular points (x, y)  = (0, 0), 
(1/2, 0), (L + I/2, 0). 

Two final significant points about the local forms in (2.7)-(2.13)are that they show the 
inevitability of separation occurring ahead of the injection and that correspondingly there is a 
strongly attached flow occurring in the neighbourhood of the finish of the injection. The local 

streamlines drawn in Figure 2 demonstrate this facet and although the wall vorticity associated 
with those streamlines happens to be zero, the next-order term (see (2.13)) in the local expan- 
sion of the wall vorticity confirms the presence next to the plate of reversed flow sufficiently 

close to the start of the injection, since -~'w < 0 there. Similarly, the counterpart of (2.13) 
near x = L + 1/2 confirms the presence next to the plate of forward motion near the finish of 
the injection, with -~'w > 0 there. Therefore the important question o f  whether flow reversal 

occurs upstream of the injection or not, for a given Reynolds number, does not have to be left 
to a full numerical attack on the Navier-Stokes problem (2.2)-(2.6). Rather, the local analysis 
alone firmly predicts the existence of upstream flow reversal at all nonzero Reynolds numbers 
and the full numerical solution of (2.2)-(2.6) then has to settle where the flow reversal up- 
stream occurs at each particular Reynolds number considered. 

3. The numerical approach 

To account for the singular nature of the solution both near the leading edge and in the far down- 
stream form (2.6) the flow field, the upper half of the x-y plane, can be mapped conformally to 

the positive quadrant of an ~-7/plane defined by 

1 
x + iy = -~ (~ + i 7) 2 , (3.1) 

as in Walsh [41 ]. This has the advantage that the local form near the leading edge ~ = r/= 0 and 
the far downstream behaviour (2.6) as ~ ~ ,,~ both become dependent on ~, r/rather than on 
x U2, y x -  1/2. The governing equations become 

R (~kn ~. ~ _ ~ - n )  = ~ 2  ~., (3.2a) 

j~ = _ ~ 2  ~b (3.2b) 

where J -= ~ 2 + r/2, ~72 __ a 2 / ~  2 + ~2/~ 2, while the boundary conditions are now 

= ~" = 0 at ~ -- 0 for rl > 0 ; (3.3a) 

at r /=0 ,  

~ = o, q,,~ = 0 for 0 < ~ < 1, (3.3b) 

~ = - ½  Vw (~2-1) '  fin =0  for 1 < ~ < ( 2 L  + 1) 1/2, (3.3c) 

= - VwL'  ~n = 0 for ~ > (2L + 1) 1/2 (3.3d) 
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from (2.4a-d); and 

~n -+t '  ~ ~ 0  as 7/-~oo with t fixed, 

~ % 2 - U 2 t f B ( 2 U 2 r i )  as t-~oo withri fixed 

(3.4) 

(3.5) 

from (2.5), (2.6) respectively. 

In our numerical treatment the discretization of the Navier-Stokes equations (3.2a, b) is 
performed in a manner similar to that of Dennis and Hudson [2] and Dennis and Smith [37], 
following Dennis' [ 1 ] suggestion. A uniform rectangular mesh with M lines parallel to the t-axis 

and N lines parallel to the ri-axis is used to span the finite ranges 0 ~< t ~< too, 0 ~< ri ~< rim, re- 
placing the infinite ranges (0, oo) in t, 77 in (3.2)-(3.5). Here too = (M-1)h,  ri= = (N-1)h  where 
h is the mesh width, and M, N are chosen so that the start and finish of the injection, at t -- 1, 
(2L + 1) 1/2 with 77 = 0, are mesh points. Then (3.2b) is replaced by the centred difference ap- 
proximation 

-h2(J~')o =~k t+ f f2+ f f3+f f4  4fro, (3.6) 

nominally of second-order accuracy in h, in the usual way. Here the subscripts 0, 1, 2, 3, 4 refer 

to evaluation at the points (t0, ri0), (t0 +h, rio), (to, rio +h), (to - h, rio), (to, % - h) respec- 
tively, where (to, rio) = (mh, nh) is a typical internal meshpoint so that 1 ~<m ~<M-2, 1 ~<n ~< 
N-2 .  For reasons of iterative convergence, however, (3.2a) is replaced by the augmented cen- 
tral-difference approximation 

D ] D  ] 1 1 1 Rhvo + (Rhv° )  2 - -~ R h ~ o  + -~ ( R h ~ o )  2 ~1 + - -~ -~ ~2 

D I D  J 1 1 1 n h v o  + (Rhv° )  2 + + T R h ~ °  +-ff (Rh~o)  2 ~3 + + ~ -ff ~4 

E = +-~ (Rh) ~(~o ~ +~o ~ ~o (3.7) 

where Uo = ( i f2 -  ff4)/2h, Vo = (if3-~J1)/2h" The five terms proportional to (Rh) 2 in (3.7) 
would be missing in the standard central-difference approximation of course but their inclusion 
here, as explained by Dennis and Hudson [2] and Dennis and Smith [37], helps to overcome the 
difficulty associated with loss of diagonal dominance in the standard difference equations par- 
ticularly at higher Reynolds numbers. Indeed, diagonal dominance is assured for all Reynolds 
numbers by the presence of those five extra terms. Moreover they do not alter the second-order 
accuracy of the central-difference approach. Like (3.6), (3.7) is applied at all internal mesh 
points to, rio except for the two special points where rio = h with to = 1 or t0 = (2L + 1) 1/2. 
rhere the momentum equation (3.7) as it stands would require use of the value of the wall vor- 
ticity ~'w at the start and finish of the injection, which is undesirable in view of inter alia the 
logarithmic singularity in ~'w there according to (2.13). To avoid reference to the wall vorticity 
at those two points alone we use differencing in the t ri and t + ri directions instead of in the 
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and r/directions of  (3.7). Once again, the nominal second order accuracy of the scheme is pre- 
served. A similar special treatment is not required for (3.6) incidentally because the stream func- 

tion near the start and finish of the injection is not singular and in fact is only weakly irregular 
(see Sec. 2). It is worth observing also that the transformation from the x - y  half plane to the 
~- r /quar ter  plane permits the singular point at the leading edge to be bypassed automatically 

by the internal difference equations (3.6), (3.7). Tests on the adequacy of these treatments of 
the three singular points ~ = 0, 1, (2L + 1) 1/2 on the plate are described below. 

The symmetry conditions (3.3a) are applied by setting ~, ~" equal to zero at ~ = 0, ~2 = mh 

for 1 ~< m ~< M -  1, throughout, while the boundary conditions on ~ in (3.3b-d) are set at ~? = 0 

for ~ = ( n - 1 ) h  with 1 ~< n ~<N. The boundary conditions on ~n in (3.3b-d) are maintained by 
means of  the difference formulation 

3 1 
Jo~'o - -  2h 2 (~l  +2@2 + qJ3 - 4 ~ 0 ) -  -~ J2~'2 (3.8) 

stemming from Woods' [42] approach. Similarly the outer boundary conditions in (3.4) are re- 
placed by the constraints 

h 2 
~'o =0,  4tP o = ~bl + ffa +2f fa  + 2h~ +---7- ~'4J4. 

, 5  
(3.9) 

In the constraints (3.8) and (3.9) the suffices 0, 1, 2, 3, 4 are defined as for (3.6), (3.7), with 
1 ~< n ~< N - 2  but m = 1 in the case of (3.8) and m = M for (3.9). Both the constraints are second 
order accurate and link the boundary values of  ~, ~" with the nearest local internal values of qs, ~'. 

Finally, it was decided that the treatment of the asymptotic downstream condition (3.5) 
would have to account satisfactorily for the difficulty concerning the unknown origin shift 

implicit in (3.5). A seemingly acceptable way of doing so is to insist that the flow acquires a 
boundary layer-like form at the downstream extremity of the integration range. Thus it is sup- 

posed that the operator ~/3~ is negligible then compared with 3/~r~, so that the downstream 
constraint becomes 

1 f3)]~'~ 1 R(ff2- ff4)]~'o = [1 ~" R(ffo- 2+'~ + 

[1 ' )] ' 

~o =~ 2+~,+h2Jo~o 

(3.10a) 

(3.10b) 

where the suffices 0, 2, 3, 4 are as for (3.6), (3.7) but with n = N - 1  for 1 ~<m ~<M-2. Back- 
ward differencing in ~ has also been applied, in obtaining (3.10a,b), to reflect the expected 
parabolic nature of  the far downstream boundary layer flow. The loss of accuracy in approxi- 
mating in backward differences the far downstream form here is not expected to reduce the 
accuracy of  the majority of the flow solution at all significantly, although tests on its effect 
will be described later, in Sec. 4. The boundary layer equations (3.10a, b) are regarded as con- 

Journal ofEngineeringMath., Vol. 15 (1981) 267-286 



Injection from a fiat plate 277 

sistency relations between the values of  the solutions at the last two meshlines ~ = ~ - h, ~=. 

The Gauss-Seidel iterative procedure used to solve (3.6)-(3.10) was similar to that of  Dennis 

and Smith [37] and others. Given a complete guess for ¢, ~" and with the boundary conditions 

on ¢, ~" at ~ = 0, on ~" at r/= ~= and on ¢ at r~ = 0 set throughout, (3.7) was used to update the 

interior ~" field, following which (3.10a) gave the new values of~" at ~ = ~= while (3.9) enabled 

the recalculation of  ¢ at r /=  r/=. Then (3.6) was used to update the interior ¢ field (except at 

the two special points mentioned before) followed by (3.10b) which fixed the new values of  ¢ 

at ~ = too and (3.8) which fixed the new values of  the wall vorticity. This enabled (3.7) to be 

re-solved and so the iteration continued. No relaxation was applied to the recalculation of the 

boundary values of  ~" and ¢ in (3.8) and (3.9) respectively but some over-relaxation was used 

occasionally in the iterative solution of  (3.6) and (3.7). Starting guesses for ¢, ~" were provided 

by the uniform stream solution ¢ = ~n' ~" = 0 supplemented by the known boundary values of  

¢ at r /=  0. The convergence criterion imposed was that two successive iterative sweeps should 

yield values of  ~ sufficiently close everywhere that the sum, over the computational field, of  the 

absolute values of  the changes in ~" at every point should be less than 0.0005. The criterion was 

enough in practice to ensure that the numerical solutions for the wall vorticity ~'w in particular 

were known to at least four significant figures. 

The effects of  the discretization of  the governing equations and the boundary conditions in- 

cludingthe special points mentioned above were examined in detail and are discussed in the next 

section. Tests on the influence of  the mesh spacing h in the equations and boundary conditions 

were made by completing solutions for different values o fh  and inspecting the resulting differ- 

ences. With regard to the two special points at the start and finish of  the injection comparisons 

were made between our calculated solutions and the local theory of  (2.7)-(2.13) near ~ = 1 and 

its counterpart near ~ = (2L + 1) 1/2. The effect of  the other special point, the leading edge, was 

tested by obtaining a solution with zero injection (V  w = 0) so that comparisons could be made 

with the corresponding solutions of  other workers who used different approaches. Lastly the 

effect of  the curtailment of  the integration range at ~ = ~= and r/= r/~o was investigated by cal- 

culating and comparing numerical solutions for different values of  ~=, r/= with a fixed mesh 

spacing h.  

4. Numerical results 

We present first, in Figure 3, the numerical solution obtained for the wall vorticity fw in the 

case of  zero injection, V w = 0, using a mesh width h = 1/20 and outer boundaries ~= = 8, r/~o = 4 

so that along the x-axis the computational domain extended from x = - 8 to x = 32. Also shown 

for the purpose o f  comparison is the numerical solution of  Walsh [41]. The agreement between 

the two seems fairly encouraging and tends to support our treatment of  both the leading edge 

singularity and the farfield conditions, as well as suggesting that the mesh width h = 1/20 gives 

reasonably accurate solutions. Walsh's [41] results in turn agree quite well with those of  Van de 

Vooren and Dijkstra [43] and Van de Vooren and Veldman [44] for this classical problem of the 

flow past an aligned impermeable semi-infinite flat plate. 

The remaining solutions for nonzero injection were all obtained with the injection velocity 

V w = 0.2 and injection length L = 1.5 so that the injection starts at ~ = 1 and finishes at ~ = 2. 
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1 
Figure 3. Numerical solutions (for any R > 0) for the wall vorticity s'W versus ~ = ~- x 2 for the case of the 
impermeable wall where V w = O. , present calculations; . . . .  , from Walsh [411. 

The solutions for the wall vorticity ~'w as a function of  ~ = (2x) 1/2 are shown in Figure 4 (a)-(d) 

for the four Reynolds numbers R = 1, 10, 50, 100. For the three lowest Reynolds numbers 

numerical solutions were calculated for two different mesh widths, h = 1/10, 1/20 while at the 

highest Reynolds number R = 100 solutions for the three mesh widths h = 1/10, 1/20, 1/30 

were obtained, along with a solution for an increased range of  integration. The effect of  de- 

creasing the value of  h seems to be a fairly regular phenomenon throughout. In particular, for 

R = 100 the closeness of  the solutions for h = 1/20 and h = 1/30 in Figure 4 (d) suggests strongly 

that h 2 extrapolation on the results from the two meshes with h = 1/10, 1/20 is quite justifiable. 

The same conclusion is expected to apply also to the solutions fo rR  = 1, 10, 50 in Figure 4(a)- 

(c). Further the influence of  the finiteness of  the computational domain is seen to be negligible 

over the bulk of  the solution. As shown in Figure 4(d) no visible change in the results is produced 

by increasing the values of  ~ ,  rtoo from 8, 4 respectively to 10, 5 respectively, which corre- 

sponds to increasing the extent of  the computational domain from - 8  ~< x ~< 32 t o - 1 2 . 5  

~< x ~< 50 along the x-axis. Indeed the resultant change in ~'w is confined in general to the 

fourth significant figure. 

Comparisons between the numerical solutions near the start and finish of  the injection, 

(~, 7/) -~ (1,0) and ((2h + 1) 1/2, 0), and the corresponding local analysis of  (2.7)-(2.13) also 

prove fairly affirmative. Specifically, the values of  Qs and QF' where 

3 1 
Q s - -  2h ~ ( - V w h  + 2 q J 2 ) -  ~ Jz~'~, t~.la) 
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Figure 4. The numerical solutions obtained when V W = 0.2, L = 1.5 for the wall vorticity ~'W as a function 
of ~" = x2/2: (a) R = 1, (b) R = 10, (c) R -- 50, (d) R = 100. Hereh = 1/30, ~ ,  -- 8, ~,~ = 4 for the solutions 
marked A; h = 1/20, ~ = 8, n,~ = 4 for B;h  = 1[10, ~ = 8, rT~ = 4 for C;h = 1/10, ~ = 10, n~ = 5 forD. 
Where any two solutions are indistinguishable graphically only the finer grid solution is shown. 

m 1 
3 (Vwh + 2 ¢ 2  +2VwL)-  ~ J2~2, (4.1b) ( 2 L + I ) Q  F = -  2h 2 

were calculated from the converged numerical  solutions. In (4.1a, b)  the subscripts 2 refer to 

evaluat ion at ~ = 1, r /=  h and at ~ = (2L + 1) = 2, ~ = h  respectively. We note  incidental ly  that  

at first sight the values of  Qs and QF would seem to give numerical  estimates for the wall vor- 

ticity at the start and finish of  the injection,  according to (3.8). In fact, of  course, Qs and QF 
are no t  employed in the numerical  t rea tment  at all since they are singular in the full solut ion 

(h ~ 0) and instead of  (4.1a,b)  the rotated differencing referred to in Sec. 3 was adopted.  How- 

ever, the behaviour of  Qs as given by (4.1 a) can be worked out  from the local theory of  Sec. 2, 

which predicts 

Qs ~ (37r + 8) Vw/27rh (4.2) 

as h --, 0, f rom the leading terms in (2.7) and the formulae in (2.8c, d). With V w = 0.2, therefore, 

Sec. 2 predicts that  

0.555 
Qs ~ ~ as h ~ 0 .  (4.3a) 

The corresponding predict ion for QF obta ined from the analogue of  (2 .7)-(2.13)  near the finish 

of  the inject ion is 

- -0 .277 
as h -+ 0. (4.3b) a F t  h 
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It follows that  for (4.3a) to be satisfied the differences in the numerical  results for Qs calculated 

for h = 1/10, 1/20 should equal 5.55 if, as we hope, these two mesh widths are fine enough to 

be able to reproduce numerical ly the local behaviour (2.7). Similarly the differences in our  nu- 

merical results for QF for h = 1/10, 1/20 should equal - 2 . 7 7  according to (4.3b), if (2.7) is to 

be verified numerical ly.  Tests on these predictions are presented in tables 1, 2 which give the 

calculated values of  Qs, QF for R = 1, 10, 50, 100 obtained from the two mesh widths h = 1/10, 

1/20 and, in the case R = 100, f rom h = 1/30 also; the predicted differences in Qs, QF from the 

results for h = 1/20, 1/30 are again 5.55 and -2 .77  according to (2.7) or (4.3a,b).  Tables 1, 2 

show that  throughout  the theoretical differences of  5.55 and - 2 . 7 7  are reproduced reasonably 

well overall in the numerical  solutions. The max imum deviation from the theoretical values is 

less than 2% even when R = 100. This tends to encourage the view that  the numerical  treat- 

ments  of  the singular points at the start and finish of  the inject ion are consistent with (2.7) and 

reproduce (2.7) sufficiently accurately. Another  point  is that the behaviour of  the numerical  

solutions for ~'w near ~ = 1 and ~ = 2 in Figures 4 (a ) - (d )  is also qualitatively in agreement with 

the local predict ion (2.13) for ~ -+ 1 and its counterpart  for ~ -~ 2. However the predictions 

(4.3a, b) with which quanti tat ive comparisons have just  been made provide a firmer test on the 

adequacy of  the numerical  t rea tments  since they are much more singular than (2.13). For  the 

dominan t  logarithmic term in (2.13) is o f  course of  the same level of  magnitude as the O(1 )  

TABLE 1 

Numerical results for QS and comparisons with {4.3a) 

R (i) (ii) (iii) (iv) (v) 

1 4.99 10.53 - 5.54 - 
10 4.15 9.67 - 5.52 - 
50 3.47 8.92 - 5.45 - 

100 3.11 8.71 14.16 5.60 5.45 

Columns (i)-(iii) give the values of QS obtained using the mesh widths h = 1/10, 
1/20, 1/30 respectively, for the Reynolds numbers indicated. Columns (iv), (v) 
then give the values of the differences between the numbers in (i), (ii) and in (ii), 
(iii) respectively. The numerical values in (iv), (v) are to be compared with the pre- 
diction from (4.3a) of a value 5.55 for the limit h -~ 0. 

TABLE 2 

Numerical results for QF and comparisons with (4. 3b} 

R (i) (ii) (iii) (iv) (v) 

1 -3.03 -5.80 - -2.77 
10 -3.39 -6.16 - -2.77 - 
50 -3.47 -6.25 - -2.78 - 

100 -3.46 -6.19 -8 .92 -2.73 -2.73 

Columns (i)- (v) are as in Table l but with QF replacing QS" The numerical values 
in (iv), (v) are to be compared with the prediction from (4.3b) of a value -2.77 
for the limit h ~ 0. 
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term there for all but a tiny range of  small values of  I x - 1/2 1 or I ~ -  1 I ; further the arbitrari- 

ness in the constant A I of  (2.11 a,c) implies arbitrariness in the O (1) term in (2.13) and hence 

the presence of  an unknown constant factor multiplying Ix - 1/2 1 in (2.13) which again hin- 

ders the making of  any firm numerical comparisons. 

The dividing streamlines, y --- Ya (x) say, on which ~ --- 0 in the x - y  plane were also calculated 

from the numerical solutions. They are shown in Figure 5 for the Reynolds numbers R = 1, 10, 

100. These streamlines divide the injected fluid from the main streaming fluid and emanate from 

the plate at the separation position x = Xse p where the skin friction or wall vorticity is zero. The 

position x = Xse p always lies ahead of  the start of  the injection, in keeping again with the pre- 

dictions of  the local theory of  Sec. 2, but Xse p increases with R over the range R = 1 to 100 

studied although on the other hand the increase in Xse p when R is increased from 50 to 100 is 

minimal (see also Figure 3). Further, at each value of  x > Xse p a decrease in the displacement 

of  the dividing streamline from the plate results from any increase in R. This aspect is also in 

line with the asymptotic form of  the dividing stream line derived from the downstream behaviour 

(2.6) and the boundary condition (2.4d) which imply that 

Ycl(X)'~, ( 2VwL ~112X114 
\ XR ] 

as x -+ ~ (4.4) 

where X = f~' (0) = 0.33206. Comparisons of  the numerical results with the asymptote (4.4) are 

given in Figure 5 and prove reasonably satisfactory even for values o f x  in the range 3 - 4  shown 

provided allowance is made for the unknown origin shift implicit in (4.4). 

The results for S'w and qJ in Figures 4, 5 all seem sensible physically and have certain inter- 

esting features. Notably the separation position x = Xse p and reattachment position x = Xreatt, at 

which ~'w = 0, both tend to move closer to the starting point of  the injection x = x s as the Rey- 

nolds number (R) increases (Figure 4(a)-(d)), although the change in Xse p as R is increased from 

50 to 100 is small. There is certainly no conclusive sign yet for large R of  any large scale separa- 

tion upstream of  the injection such as would be implied by the analogue for incompressible 

2 

Vd(X) 

t 

1 

~ R = I  

~ ~ ~ = = 1 o  

R = 1 0 0  

0.5 2 

I I 
3 _ - ~ x  4 

Figure 5. The dividing streamline Yd(X) (on which qJ = 0) versus x, for R = 1, 10, 100. The dashed lines in- 
dicate the corresponding asymptotes (4.4) with a shift in the origin of Yd (x) in each case. The hatching in- 
dicates the start and finish of the injection. 
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fluid flow of the supersonic flow theory of Smith and Stewartson [22] for high Reynolds num- 
bers. Indeed, such a theory would imply that the separation point x = Xse p approaches the 
leading edge x = 0 + in the limit as R ~ 0% the theory is the subject of a current investigation 

by Drs F. T. Smith and P. W. Duck, incidentally. Some evidence of significant upstream separa- 
tion has been found experimentally in the incompressible case however (Smith [31]), but at 
much higher Reynolds numbers than those of the present computations. On the other hand there 

is a clear tendency for the local maximum of the wall vorticity beyond the finish of the injec- 
tion to approach zero as the Reynolds number is increased in Figure 4(a)-(d). This bears some 
resemblance to the numerical results for asymptotically high Reynolds number flow of Napoli- 

tano and Messick [36] whose work suggested that significant separation may first occur down- 
stream rather than upstream of the injection. Their triple-deck (Stewartson [23], Messiter [24]) 

injection problem has a much different context from ours, of course, but other trends of the 
present solutions are also akin to their results. The variations of the wall vorticity for increasing 
R, for instance, are not dissimilar to their calculated variations or indeed to the linearized solu- 
tions of the triple-deck problem as described by Smith [21] and Napolitano and Messick [36]. 
The accentuation of the local maximum of -~'w just beyond the start of the injection and the 
decreased slope of -~'w immediately after that, for R = 100, seem characteristic of the high 
Reynolds number theory (Napolitano and Messick [36], Smith and Stewartson [16], [22]). Here 
it seems worth mentioning also that the occurrence of the separation significantly far ahead of 
the start of the injection in the case R = 1 (Figures 4(a), 5) might suggest the occurrence of a 

Stokes flow separation upstream in the Stokes limit R -+ 0 +, which would be of some interest. 
We would re-emphasize finally however that the local analysis of (2.7)-(2.13) shows, and our 
calculations verify (Figures 4-5), that separation in the sense of flow reversal always takes place 

upstream of the injection for all nonzero Reynolds numbers R. Whether this upstream separa- 
tion remains quite close to the start of the injection with further increases in R beyond 100 or 
instead leads to a large scale separation process significantly far ahead of the injection, of the 

type considered by Smith and Stewartson [22], Sychev [33] and Smith [34], remains to be seen. 
No successful attempts at obtaining numerical solutions for values of R greater than 100 have 
so far been made. 

5. Further comments 

Thc checks applied to the numerical work and described in Secs. 3, 4 above all seem to prove 

satisfactory and tend to suggest that the numerical results obtained here are reasonably accurate. 
The checks include allowance for the influences of mesh spacing (Figures 4(a)-(d)) and of the 
placing for the outer boundaries of the computational domain (Figure 4(d)), as well as of the 

treatments applied to the singular points at the leading edge (Figure 3) and at the ends of the 
injection (Tables 1, 2). In particular the agreement found between the present numerical solu- 
tions and the local analysis of Sec. 2, which leads to the predictions (4.3a, b), is especially en- 
couraging since the treatment of singular points in the calculation of any flowfield is always an 
issue of concern and is often the subject of much scepticism. There would seem to be few real 
grounds for such scepticism in the context of the treatment of the singular points in the present 
injection problem. 

Journal ofEngineeringMath., Vol. 15 (1981) 267-286 



284 F. T. Smith and S. C R. Dennis 

The fluid dynamical aspects of  the local theory of  Sec. 2 combined with the calculated re- 

suits just presented in Sec. 4 have certain intriguing qualities. Specifically they lend some sup- 

port to both the prospects raised in the introduction concerning the occurrence of  separation in 

the high Reynolds number regime. For on the one hand Sec. 2 shows that separation ahead of  

the injection is bound to occur because of  the positive infinite value of  the wall vorticity at the 

start of  the injection and the calculations fully confirm this. On the other hand the separation 

point moves marginally closer to the start of  the injection as the Reynolds number R increases, 

at least in the range 1 ~< R ~< 100 studied numerically here, while not far downstream of the 

injection the wall vorticity has a tendency to approach zero with increasing R, thus suggesting 

the possibility of  the onset of  a downstream separation. It may be, in fact, that significant 

separation both upstream and downstream of the injection is inevitable at higher Reynolds num- 

bers. To help decide this and other issues regarding the high Reynolds number laminar flow 

properties of  the incompressible injection problem further accurate numerical solutions of  the 

Navier-Stokes equations with separation may well provide valuable guidance towards extending 

the current relatively limited understanding of  the asymptotic structure of  the solution. It is 

hoped that such further numerical solutions will be obtainable by the present methods because 

of  the advantage gained from employing the augmented centred-differencing technique of  Den- 

nis [1] and Dennis and Hudson [2]. Again, we envisage that the calculations presented in this 

paper for the range 1 <~ R ~< 100 may themselves provide the kind of  quantitative results against 

which the relevance, if not the theoretical validity, of  any future asymptotic theory on the sub- 

ject can be judged. 
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